

Раздел 1. Вентиляция.

Задача 1.

Как с помощью I-d диаграммы определить относительную влажность воздуха, если на поле диаграммы отсутствуют все изолинии ϕ кроме ϕ =100%? i-d диаграмма прилагается.

Залача 2.

Вывести формулу по определению эквивалентной шероховатости стенки трубы для установки, представленной на рис. 1.

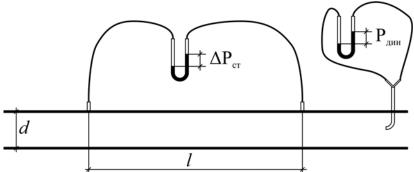


Рис. 1 Определение эквивалентной шероховатости

Залача 3.

Известно, что КМС внезапного расширения $\,arsigma_1 = \frac{\Delta P}{\rho v_{\scriptscriptstyle 1}^2/2}\,$

Как изменится значение КМС, если его отнести ко второму сечению?

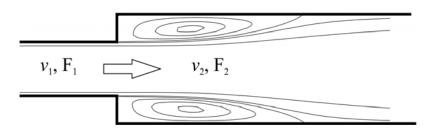


Рис. 2 Определение КМС внезапного расширения.

Залача 4.

Из помещения на улицу выходит воздуховод ($d=160\,$ мм). Длина воздуховода, проложенного на улице, равна 13 м. Будет ли туманообразование в воздуховоде, если в нем движется воздух с температурой 38 °C и относительной влажностью 52 % со скоростью 4,5 м/с. Температура наружного воздуха $-20\,$ °C. Коэффициент теплопередачи стенки воздуховода 5,1 Вт/м 2 . °C. i-d диаграмма прилагается.

Задача 5.

Определить высоту приточной установки над уровнем пола так, чтобы скорость воздуха при входе в рабочую зону не превышала 0,3 м/сек. Расход воздуха 800 м 3 /ч. Диаметр подводящего воздуховода d=350 мм. Высоту рабочей зоны принять равной 2 м. В таблице 1 дана зависимость осевой скорости воздушного факела $v_{_{\!\mathit{U}}}$, выходящего из насадка, от скорости воздуха в подводящей трубе $v_{_{\!\mathit{0}}}$, диаметра подводящего воздуховода d и расстояния x рассматриваемого сечения факела до насадки. Схема установки представлена на рис. 4.

Таблица 1

v_u/v_0	0,36	0,32	0,28	0,22	0,15	0,13
x/d	1	2	3	5	8	10

Рис 4. Приточная установка

Задача 6.

По алюминиевому магистральному воздуховоду длиной 37 м проходит воздух с температурой 60 ^{o}C . Диаметр воздуховода D=400 мм; скорость воздуха $v=8\, m\,/\, ce\kappa$; температура воздуха в помещении $18\,^{o}C$. Определить падение температуры воздуха в воздуховоде. Коэффициент теплопередачи алюминиевого воздуховода $k=3,23\, Bm\,/\, m^2 \cdot ^{o}C$. где C - теплоемкость воздуха, $1005\, \, {\rm Дж/(кr\cdot K)}$.

Раздел 2. Отопление

Задача № 1

Определить естественное циркуляционное давление в Π -образном стояке системы отопления с нижней разводкой, представленной на рис. 10. Исходные данные: $Q_1, Q_2, Q_3, Q_4, Q_5, t_r$, t_0 .

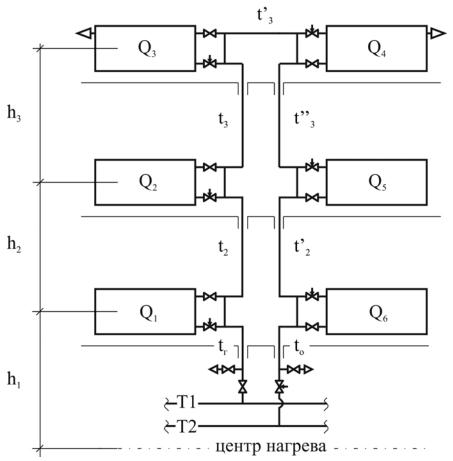


Рис. 10. П-образный стояк системы отопления

Задача № 2.

Подобрать смесительный насос для системы отопления (CO) со следующими характеристиками: тепловая нагрузка системы отопления Q_{CO} =32156 Вт, потери давления в системе отопления ΔP_{CO} =13785 Па. Насос устанавливается на перемычках. Температура теплоносителя в тепловой сети t_1 =110°C, t_2 =70°C. Плотность воды при температуре 95°C - ρ =971,5 кг/м³. При этих же условиях подобрать насос, установленный на подающем теплопроводе системы отопления.

Задача № 3.

На рисунке 11 дана СО. Определить число секций отопительного прибора Rifar Alum 400, установленного на 2 этаже. Коэффициент затекания теплоносителя в прибор α =0,4. Понижение температуры теплоносителя на участке магистрали до стояка Δ tm=0,8°C. Теплоотдача открыто проложенных трубопроводов QTp=355 Вт. Значения коэффициентов n=0,31; c=0,85; p=0,03; b=1,0; ψ =1,0. Значение номинального теплового потока одной секции Q=163 Вт/секц.

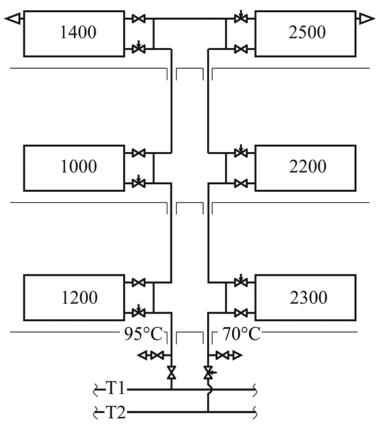


Рис. 11. Определение числа секций отопительных приборов.

Задача № 4

Вывести формулу коэффициента теплопередачи отопительного прибора, подключенного к однотрубному стояку системы отопления с верхней разводкой.

Исходные данные: параметры теплоносителя в системе отопления $t_{\scriptscriptstyle \Gamma}$ и t_0 ; тепловая нагрузка стояка $Q_{\scriptscriptstyle \rm CT}$, коэффициент затекания теплоносителя в отопительный прибор α , площадь теплоотдающей поверхности прибора $A_{\scriptscriptstyle \rm Rp}$, температура теплоносителя на входе и выходе из отопительного прибора $t_{\scriptscriptstyle \rm BX}$ и $t_{\scriptscriptstyle \rm BMX}$, температура воздуха в помещении $t_{\scriptscriptstyle \rm BX}$ теплоемкость теплоносителя $t_{\scriptscriptstyle \rm CX}$

Задача № 5

Определить среднюю температуру теплоносителя в отопительных приборах на 5 этаже Побразного стояка в пятиэтажном жилом здании, если тепловая нагрузка стояка $Q=25000~\mathrm{Bt}$, коэффициент затекания в прибор $\alpha=0.18$. Теплопотери всех квартир равны. Потери теплоты в трубопроводах пренебречь.

Раздел 3. Газоснабжение

Задача № 1

Определить сколько тепла получится при сжигании $10 \, \mathrm{m}^3$ природного газа, и относительную плотность газа. Основные характеристики природного газа представлены в таблице 4.

Таблица 4

Вещество	Процентный	Теплота сгорания	Плотность	Относительная
	состав	Q н, M Дж/м 3	ρ, κΓ/м ³	плотность
Метан(СН4)	91,8 %,	33,41	0,656	0,5546
этан(С2Н6)	3,8%	59,85	1,36	1,046
пропан(С3Н8)	1,2%	86,53	2,01	1,549
Азот(N2)	2,3%	-	1,25	0,967
Диоксида углерода(0,9 %	-	1,98	1,528
CO2)				

Задача № 2

Определить плотность газообразного топлива, имеющего следующий состав (в % по объему): CH_4 =95,3%, C_2H_6 =0,8%, C_3H_8 =0,45%, CO_2 =1,2%, N_2 =2,3%.

Задача № 3

Рассчитать массовый и объемный расход воздуха, необходимый для горения газового фонтана расходом 12 млн. м 3 /сут., состоящего из CH₄-89,5%, C₂H₆-4,5%, N₂-3,2%, CO-2,8% при температуре воздуха 23 °C и давлении 102 кПа. Принять содержание кислорода в воздухе равным 21%, азота 79%

Задача № 4

Определить расчетный расход газа в жилом доме на 60 квартир. В 20 квартирах установлено 4-х конфорочная газовая плита с духовым шкафом и проточный водоподогреватель для ванной комнаты. В остальных квартирах установлена 2-х конфорочная газовая плита без духового шкафа и водоподогреватель для кухни. На первом этаже дома находится столовая, в которой установлена ресторанная плита с комбинированным верхом и 2-мя духовыми шкафами и 4 варочных котла на 280л. Низшая теплота сгорания газа Q_{μ}^{p} =35200 кДж/м³. Номинальные расходы газа для оборудований представлены в таблице 5. Коэффициенты одновременности для однотипных приборов представлены в таблице 6.

Номинальные расходы газа.

Название прибора	q, ккал/ч
2-х конфорочная плита с духовым шкафом	5500
2-х конфорочная плита без духового шкафа	3100
3-х конфорочная плита с духовым шкафом	7850
4-х конфорочная плита с духовым шкафом	9300
Плита ресторанная с комбинированным верхом и 2-мя духовыми шкафами	62000
Котел для приготовления пищи (на 100л)	17000
Шкаф ресторанный духовой	11000
Водонагреватель проточный для ванн	21000
Водонагреватель проточный для кухни	9000

Таблица 6 Коэффициент одновременности для однотипных приборов

Число	Плита	Плита	Плита 2-конфо-	Плита 4- конфорочная и
квар-	4-конфороч-	2-конфороч-	рочная и проточный	проточный водонагреватель
тир	ная	ная	водонагреватель	
1	1	1	0,750	0,700
2	0,650	0,840	0,640	0,560
10	0,254	0,263	0,315	0,340
15	0,240	0,242	0,275	0,300
20	0,235	0,230	0,260	0,280
30	0,231	0,218	0,235	0,250
40	0,227	0,213	0,205	0,230
50	0,223	0,210	0,193	0,215

Задача №5

Определить верхний L_h и нижний L_l пределы воспламеняемости газа Вуктыльского месторождения (газопровод «Сияние севера»). Состав газа (%): $\mathrm{CH_4}$ - 82,5; $\mathrm{C_2H_{6+Bысш}}$ - 12,3; $\mathrm{CO_2}$ - 0,1; $\mathrm{N_2}$ - 5,1. Балластные примеси B=5,2%. Пределы воспламеняемости горючих компонентов представлены в таблице 7.

Таблица 7
Пределы воспламеняемости горючих компонентов газа

Компоненты	Содержание газа в газовоздушной смеси, об. %		
	при нижнем пределе	при верхнем пределе	
CH ₄	5,1	15,5	
С ₂ Н _{6+Высш}	3,1	13,5	

Раздел 4. Кондиционирование и Холодоснабжение

Задача №1.

Температура наружного воздуха, входящего в теплообменник $t=22^{\circ}\text{C}$, $\phi=55\%$. Энтальпия обработанного воздуха — 33,5 кДж/кг. Количество воздуха, проходящее через теплообменник — 23000 кг/ч. Определить скрытую холодопроизводительность. Вспомогательный материал: i-d диаграмма.

Задача №2.

Прямоточная система кондиционирования воздуха с 2-мя подогревами, СО компенсирует недостаток теплоты. Подача воздуха организована непосредственно в рабочую зону. Влажность воздуха в КО достигает 95%. Система устроена так, чтобы подогреватель первой ступени имел наименьшую мощность из возможных. Q_{K1} =1005200 Дж/ч, температура наружного воздуха = -12°C, ϕ_H =68%. Опасность замерзания воды в камере орошения возникает при температуре ниже 2 °C. Найти количество воды, расходуемой в КО, и G воздуха.

Задача № 3

Рассчитать холодопроизводительность холодильной машины в рабочем режиме, если стандартная холодопроизводительность Q_{ст} по данным каталога равна 120 кВт, температура испарителя t_0 =6 °C, температура всасывания t_B = 14 °C, температура конденсации хладагента t_K =36 $^{\circ}$ С, температура переохлаждения $t_{\text{п}} = 29 \, ^{\circ}$ С. В рабочем режиме температура холодной воды $t_{\text{хв}} = 13$ °C, температура испарителя принять на 4°C ниже температуры холодной воды, температура конденсации 34 °C, температура переохлаждения принять на 4°C ниже температуры конденсации, а температуру всасывания на 10°C больше температуры испарителя. В качестве хладагента используется хладон-22. График зависимости $\lambda = f(P\kappa/Po)$ Представлен рис.12. на Вспомогательный материал: диаграмма р-і.

Рис.12. График зависимости λ =f(Pк/Po)

Определить расход воды в камере орошения. Температура приточного воздуха 14°C. Кратность воздухообмена равна 1. Размеры помещения 32х21х6 м. Коэффициент орошения равен 0,6.

Раздел 5. ТФЗ

Задача №1

Найти температуру воздуха на холодном чердаке одноэтажного дома, зная внутреннюю температуру в комнате снизу $t_{\text{вн}}$ =20°C, площадь пола чердака $F_{\text{ч}}$ =2 м^2 . Величина полного термического сопротивления пола чердака $R_{\text{ч}}$ =2,7 m^2 -°C/Вт. Известно, что температура на чердаке выше, чем температура на улице на 22°C. Площадь кровли $F_{\text{к}}$ =4 m^2 ,величина ее полного термического сопротивления $R_{\text{к}}$ =2,7 m^2 -°C/Вт.

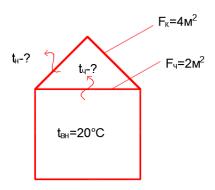


Рис. 15. Определение температуры помещения.

Задача №2

Найти температуру воздуха в неотапливаемом техническом подполье, расположенном ниже уровня земли одноэтажного дома, зная внутреннюю температуру в комнате над подпольем $t_{\text{вн}}=20^{\circ}\text{C}$, площадь пола $F_{\text{п}}=7\text{m}^2$.Величина термического сопротивления пола $R_{\text{п}}=1,7\text{m}^2\cdot\text{o}\text{C/Bt}$. Известно, что температура на улице $t_{\text{н}}=-31^{\circ}\text{C}$. Площадь наружной стены $F_{\text{н}}=4\text{m}^2$, величина ее термического сопротивления $R_{\text{н}}=4,3$ м $^2\cdot\text{o}\text{C/Bt}$, коэффициент, учитывающий зависимость положения ограждающей конструкции по отношению к наружному воздуху, равен n=0,4

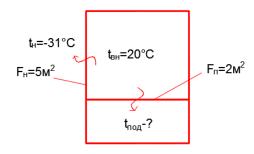


Рис. 16. Определение температуры помещения

Задача № 3

Определить термическое сопротивление однослойной наружной стены помещения. Если до включения дополнительного обогревателя температура внутри составляла $20\,^{\circ}$ C, после включения поднялась до $27\,^{\circ}$ C. При включении доп. обогревателя плотность теплового потока через исходную стену изменилась на $1,7\,(\mathrm{Bt/m^2})$.

Задача № 4

Плоская стенка рис.18 состоит из трёх слоев толщиной δ_1 =120 мм, δ_2 =70 мм и δ_3 =40 мм, коэффициенты теплопроводности слоев соответственно равны λ_1 =2,1 BT/(м· °C), λ_2 = 7,6 BT/(м· °C) и λ_3 =9,5 BT/(м· °C). Второй слой имеет температуры поверхностей T_{1-2} и T_{2-3} =43°C. Температура наружных поверхностей T_{1-2} и T_{1-2} .

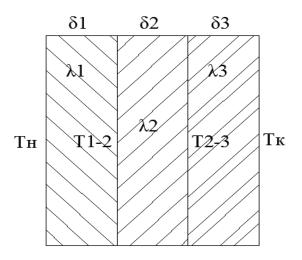


Рис. 18. Плоская трехслойная стенка.

Раздел 6 Теплоснабжение

Задача № 1

На рисунке дана тепловая сеть с двумя потребителями, а также пьезометрический график. При нормальном режиме воды у каждого потребителя G1 = G2 = 0.07 м3/с. Определить коэффициент гидравлической устойчивости системы потребителя 2, а также расход воды у потребителя 2 и степень изменения расхода воды у потребителя 2 при выключении потребителя 1. Авторегуляторы на вводах потребителей отсутствуют. Диаметры подающих и обратных трубопроводов участков равны.

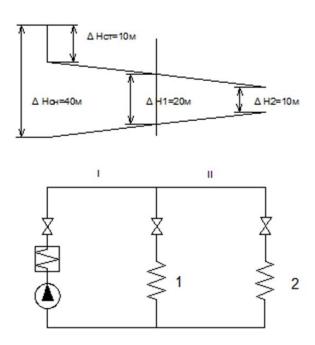
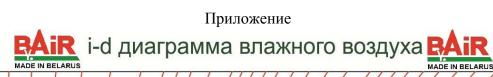
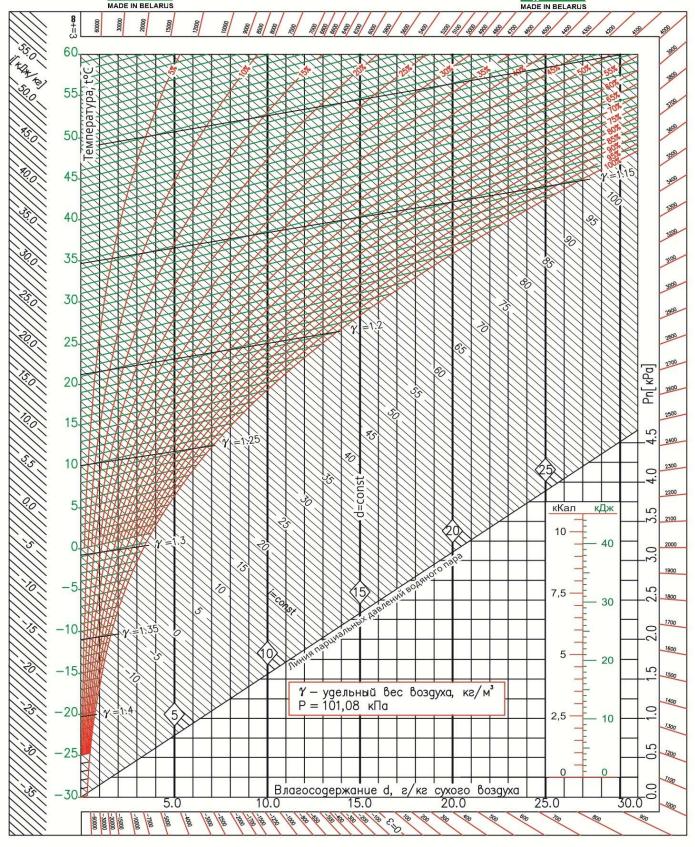
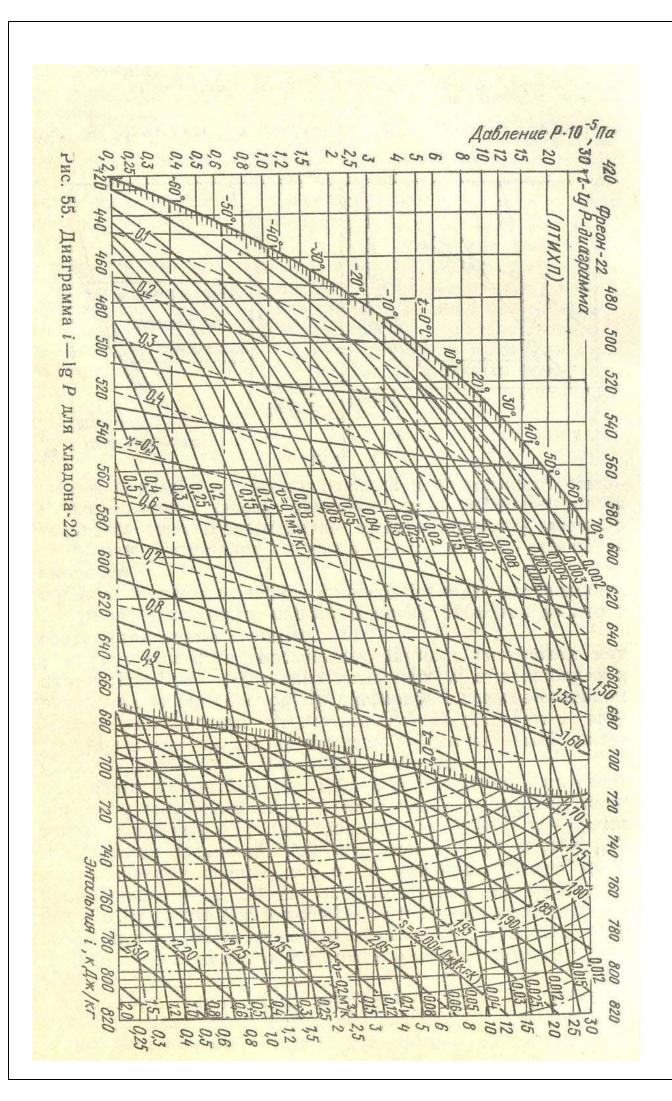





Рис. Схема тепловой сети и пьезометрический график.

